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PREFACE

For many years the U.S. Air Force has employed large-scale, discrete-

event digital simulation models for evaluating the cost-effectiveness of

various replenishment strategies for operating satellite systems. The

extensive use of computer simulation presupposes a problem complexity

intractable to closed form or analytical solutions. This statement

is true if analysis requires a great amount of detailed information.

This Note demonstrates that there is a level of aggregation of the

data inputs at which closed form tractability may be attained. More-

over, given this input aggregation representing failure patterns and

replenishment strategies, the exact closed forms for approximating

cost-effectiveness are derived.

The closed form expressions for the cost-effectiveness of satel-

lite systems are not meant to replace the large-scale simulation pro-

grams. The aggregate level measures can be most effectively employed

to check the computer programs for internal consistency and to narrow

the focus of acceptable inputs into the large-scale simulation. Proper

* use of the analytical tools presented herein can reduce the computa-

tional effort by significantly reducing the number of simulation runs

necessary to identify the most attractive replenishment methods.

This work was done under the Project AIR FORCE project "Concept

Formulation and Exploratory Research (Acquisition)."
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COST EFFECTIVESS MEASURES OF REPLENISHMNT STRATEGIES
FOR SYSTEM OF ORBITAL SPACECRA T

1.0 INTRODUCTION

Planning the operational strategy for a system of joint military/

civilian satellites maintained at a high-earth orbit is a difficult

task. The problems involved stem from two major sources. Maintenance

requirements are rather complex. Moreover, the ability to maintain and

to operate the satellite systems is extremely sensitive to the pre-

dicted scheduling of budget funding.

The maintenance concepts for a system in orbit are significantly

nontraditional. If a critical subsystem fails, no remove-and-replace

capability exists, as yet. Therefore, maintenance cannot be accom-

plished according to traditional norms. The satellite possessing the

nonoperative subsystem is said to have failed add must be replaced.

For orbiting space systems, replacement usually is accomplished either

by launching a new satellite or transitioning an on-orbit spare. In

either case, certain additional considerations emerge as to the mainte-

nance of the alternative system.

No matter which alternative is chosen or how the alternative is

itself maintained, costs will be engendered. As one would suspect,

each complex maintenance concept produces a cost measure and an effec-

tiveness measure. The complexity of the relationships among operations

strategies, costs, and effectiveness or performance measures naturally

leads the analyst to a simulation modeling approach for planning and

evaluating operations scenarios within given operational contexts.

Simulation models are valuable tools for investigating micro-level in-

teractions.

However, one might reasonably suspect that an aggregation level

exists at which may be formulated a formal theory concisely character-

izing the basic relationships among operations strategies, costs, and

effectiveness measures. Section 2.0 establishes the appropriate ag-

gregation level and develops the underlying theoretical constructs.

9w The resultant output should be analytical expressions regarding the

t
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basic relationships among operations strategies, costs, and effec-

tiveness as a function of input parameters describing the operations

strategies at the appropriate level of aggregation.

Once the basic relationships have been specified, test cases are

made comparing simulation model outputs with analytical model outputs,

at the same aggregation levels. The necessity to aggregate simulation

model inputs for use in the analytical forms increases the likelihood

that the aggregate outputs from each will not match exactly. However,

these aggregate outputs should be relatively close to each other. The

most widely used simulation models are described in Section 3.0. The

input aggregation methodologies are described and performed in Section

4.0, which also contains comparisons of simulation and analytical

computations.

The comparative computations, while strongly suspect because of

the aggregation requirement, do indicate that the aggregation level and

closed forms derived are appropriate to the cost-effectiveness evalua-

tion of operations strategies for orbiting satellite systems.

Finally, the Appendixes provide illustrations of the actual com-

putations employed to derive Fig. 2: Comparison of Simulation Outputs

and Closed Form Outputs. Appendix A provides the aggregation computa-

tions used to transform the simulation inputs to analytical inputs.

Appendix B presents two representative" computations of analytical out-

puts using aggregated inputs.

The general approach employed is to consider a system of orbiting

satellites as a processing type of system. Under certain general as-

sumptions (which are not critical), the inputs and outputs of process-

ing may be balanced. Thus the state of the system is defined, and

state balancing equations lead to the analytic forms desired.

2.0 A GENERAL MODEL OF AN ORBITING SATELLITE SYSTEM

A satellite system is defined as a configuration of M satellites

. -on orbit, performing a single mission. A configuration of satellites

is any number of satellites sharing a common orbital plane. The state

of the satellite system is specified according to the number of opera-

tional satellites in the configuration.

'21



The state of the satellite configuration is altered by satellite

failures and satellite replenishments and, thus, may be described by

the number of operational satellites on orbit. The exact form of re-

plenishment operations to t-he satellite configuration is presently un-

specified. Analysis of changes in the state of the on-orbit system

assume the existence of a time increment at the end of which the state

of the system may be clearly discerned. This time increment must

possess several properties.

First, the state-changes in one time increment must not be af-

fected by failure and replenishment activities of previous time incre-

ments. Additionally, the various activities which may change the

orbital configuration state must be described by the same rate of occur-

rence, regardless of which time increment is considered. Finally, the

length of the time increment must be chosen such that a failure and a

replenishment activity have a negligible probability of joint occurrence

during the time increment. For orbital systems, these assumptions are

not particularly critical, especially since the stochastic modeling

approach which is employed has usually proved to be the most robust

approach to modeling uncertainty in state-spaces. Moreover, since the

overall space segment is a relatively small population (compared to

fleets of airplanes, for example), determination of an appropriate

time increment (say one day) is a relatively simple task.

A common performance measure for evaluating the failure models

and the replenishment strategies employed to operate the on-orbit

system is the expected availability of the system. Theoretically, the

concept of availability is construed to mean the probability that a

system will be in an operable condition to perform its mission if re-

quired to do so. This traditional orientation to availability assumes

a bistate situation: the system is available or it is not available.

Satellite systems, however, have forced a different approach to

I. measurement of availability; availability is defined as a multistate

measure. A satellite configuration is deemed to be available if K or

more of the M(KYM) satellites are operational. In other words, if all

M satellites are operational, the system is operating to its maximum

capability; however, a minimal capability is still provided if between
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K and M satellites in the orbital configuration are operational. This

is an attempt to impose a form of redundancy upon the operational

system.

The criterion of expected life cycle costs should also be related

to the same state-changing activities and their rates of occurrence.

For this analysis, life cycle costs are interpreted to mean the accumu-

lation of expenditures over the operating horizon of the satellite

system in the following categories: (a) research, development, testing,

and evaluation (RDTE) activities; (b) production activities; (c) launch

activities; and (d) inventory carrying activities. Note that the tra-

ditional operations and maintenance costs are simply represented as

inventory carrying costs. Other operations costs do exist (data moni-

toring and analysis) but are not included for simplicity. The models

presented could be easily adapted to include more detail as desired;

however, since the primary orientation is focused upon aggregation of

information, the inventory costs are assumed to be the primary com-

ponent of operations and maintenance costs when considering the opera-

tion of orbital configurations.

Finally, two special cases are of interest: K of M operational

satellites with no orbital spares, and K of M operational satellites

with N orbital spares. Each of these cases may be deduced from the

general models formulated. The major impact of the use or nonuse of

orbital spares is obviously focused upon the expected service or re-

plenishment rates employed in the analytical forms.

2.1 The Expected Availability Model

Consider a satellite system consisting of a configuration of M

satellites sharing a common orbital plane. The system state and the

parameters affecting the state change process may be defined as

follows:

n - number of operational satellites on-orbit;

An - constant expected failure rate per unit time of individual

satellites, as a function of the state n of the system;

1- i| } - . .I Il I l i a "
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n constant expected replenishment rate per unit time of

individual satellites, as a function of the state n of the

system.

The values of A , n represent operational strategies defined at

an appropriate level of aggregation, as stated earlier. The actual

forms of An, Pn depend upon the specific context being considered.

Section 2.3 will describe some specific forms.

Using the terminology above, the assumptions previously described

may be more precisely stated. The key to this formalization is defini-

tion of the time increment in question, as follows:

At = a time increment which satisfies the following conditions:

(a) successive passages of At are stationary and

independent;

(b) the probability of zero replenishments during At,

given n operational satellites on orbit is given

by 1 - jnAt; the probability of zero failures during

At, given n operational satellites on orbit is

given by 1 - A At;

(c) the probability of one replacement during At,

given n operational satellites on orbit is described

by vn At; the probability of one failure during At,

given n operational satellites on orbit is described

by A nAt;

(d) the probability of two or more state changes during

At is given by O(At) [powers of At ? 2], which in

limit as At----*O, becomes 0 and thus, may be effec-

tively ignored, for purposes of this analysis.I.

The state transitions may be completely characterized by the fol-

lowing categorical descriptions:

1
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State at t Activities During t State at (t + At)

0 (No Failures, No Replenishments) 0

1 (One Failure, No Replenishments) 0

0 < n < M (No Failures, No Replenishments) 0 < n < M

n - 1 (No Failures, One Replenishment) 0 < n < M

n + 1 (One Failure, No Replenishments) 0 < n < M

M (No Failures, No Replenishments) M

M - 1 (No Failures, One Replenishment) M

The maior concern associated with this state-space approach is to

formalize cne uncertainty associated with various states of the orbit-

ing satellite system. The uncertainty may be reflected by the fol-

lowing notations:

Pn(t) = the probability that n operational satellites are on-

orbit at some time t.

Using the independence assumptions regarding At and ignoring all

terms on O(At), we can describe the probability transitions using the

state transition classes described above:

(2.1) P (t + At) = Po(t) - [1][l - poAt] + P1 (t)[AiAt][l - PlAtI

The "l" occurs above because the probability of zero failures

given zeo operacional satellites on-orbit is 1.00;

(2.2) P n(t + At) = P n(t)[l - x At]n11[1 - on At]

+ P n(t) [i At][ I - niAt]
n-l

I n+l (t) nI I

+ P n+I[X+1 AtI[lAt
I / [ n + l~t [  -n+ilt

"t tor 0 < i < M, wiere

1>]
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n
operational satellites on-orbit fails during At;

and,

(n+i') . the combination of ways in which one of n+l operational

satellites on-orbit could fail during At;

(2.3) PM(t + At) = PM(t)[i - XMAt] MI]

+ PMl(t) [UMlAt][l - XMlAt]

where

a) [1 - )MAt]M and [I - XM_1At] M- are as described above; and,

b) the "I" occurs because the probability of zero launches

during At given that the maximum number M is on-orbit is 1.00.

In order to make the equations more tractable, the power terms can

be expanded, using the binomial expansion to achieve the following

substitution:

(1 + OAt)n = 1 + nOAt + [terms with powers of At > 2]

(1 + OAt)n= I + nOAt + o(At) where 0 = a constant.

Using some algebra and taking the limit as At approaches zero.

[which justifies our ignoring terms in o(At)], the following finite

set of differential-difference equations is obtained:

(2.4) P 0 (t) = -i0 P (t) +X PI (t) n0O

(2.5) P n (t) = - (n A + i n) P nt) + n-i P n- t)n n n n n- nl

+ (n+l)Xn + I Pn+l t)

0 < n < M

(2.6) PM'0(t) -M XM PM(t) + jM-I P1- (t) nM

1-'



2.A.1 The Transient State Solution

The finite system of equations derived above may now be solved.

Unfortunately, an actual solution description requires knowledge of

a specific value of M and a great deal of algebraic manipulation.

For completeness, a solution procedure is briefly outlined in this

section.

Since the system of equations are differential in form, they

must be subject to a set of boundary conditions in order to admit a

finite and real solution possessing the standard properties of

probability density functions. The boundary conditions are as
1% follows:

1 i if n=o
Pn(O)

if n>o

The initial step in determining the transient-state solutions

is to convert the equations to closed forms not employing derivatives.

Define the function *n (0) as

n (0) f e- Ot Pn(t) dt

0

Using integration by parts, the following expression may be

derived:

Go
f e-O P n I(t) dt =O0 (0) -P n(0)
0

-Ot
Thus, equations (2.4), (2.5), (2.6) may be multiplied by e

and integrated between zero and infinity with respect to the

variable t to yield.

(2.7) (E + 0o € (0) -X 101 (0) 1
001

1
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(2.8) -Un-1 *n-1 (e) + (e+nAn+;n ) On(e)

- (n+l)Xn+1  n+l(e) - 0 0 < n < M

(2.9) M'M-l *-1(0) + (0 + KM) *M (0) - 0

a system of M+I linear equations in the M+l variables * (0),

i0*14 (0).

These equations can be solved simultaneously for (0) and then

inverted for P (t), using the method of the residues or using partialn

fraction expansion. Complexity of the general closed form expressions

for P (t) prohibits solution herein and, in any case, is of non

interest relative to the remainder of the analysis.

2.1.2 The Steady-State Solution

Since large scale simulation models compute long-run expected

a, ailability, the steady-state solutions are of more importance to

this study. The typical steady-state assumption requires a signifi-

cant passage of time to allow routine and repetitive activities to

describe the system. By computing expected availability over a

large number of simulation trials, a computer simulation model is,

in effect, allowing enough time to pass to evaluate all possible

combinations of sequences of operations activities which could

conceivably effect the expected availability of a satellite system.

Mathematically, one allows t - w. The resultant effect upon

equations (2.4), (2.5), and (2.6) is that P P(t) - 0 (routine
n

activities do not allow for changes in activity levels relative to

time changes) and that P (t) P (if the rate of change of P isn n n

zero, the value of P must stabilize). Additionally, one must addn
Ile the constraint that the total probability must equal to one.

(2.10) -o P o + P

0 0 1
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(2.11) n- pn-i - (nXn + 1n) Pn + (n+l)X n+l Pn+l - 0

0< n<M

(2.12) 'M-1 PM-1 - M M - 0

(2.13) P0 + --- + PM

The above equations contain one redundant equation in (2.11)

which can be eliminated yielding a system of M+l linear equations to

be solved simultaneously for the M+I unknowns Po ' P M

Theorem 1: The expected on-orbit availability of a satellite

system requiring a minimum of K out of M (K < M)

satellites on-orbit is defined by
E(A) = Pk + ... + PM [I < K < M]

where

7Tn I A
p =iA~L. 1
n n! P 0n 1, M

and

n-i n. f
Proof -

From (2.10), P 01  P P

IX

Ii"
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From (2.11), 2 X2 P2  (Ai+ )P 1 1-0 P0

2 X p A + L2PoP

2 2  (0l l)- oo P

p P p2 2 2. o

n- IJ-

Assume Pn iiP
n-I 0u-

n

and p= .-I )
n n. 0

From (2.11)

Xnl n+l P n+l = (n A + ]n) Pn n-I -

n

n C'i-i P-

(n+l) X P a(nX +  n
n+1 n+1 n n. n. 0

-n-

I H, ,

n (n-i)! 0

I .

EN,
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(n+l)A An+l n+l [ X n( ) J

n-1 1

W

- (n-1)! o o

(n+l) X P -~ In n ji -1 + unlin 1 -n '
n+l + nX

L J~k--

n-I n+l
X- X- l - - J-i\- - o

n+l " )(n) (n-i) 0 (n+l)1

Thus, by mathematical induction, the analysis shows that

p 1 im1 , X1 nPo
n I n! <n<M

L

From (2.12) M A M PM P"M-1 'M-1

By the induction argument, a substition for PH- is in order:

MAMH PM" I'zl (H-i)! ao

-.. .
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H M " Po n - M

completing the first part of the proof.

From (2.13)

P + J.1oX = I

n-i

n -
H Vr _1

' 
J -1

completing the proof of Theorem 1.

Corallary 1.1: The parameters

4 {expected number of failures per unit

time as a function of the number of

satellites on-orbit, and

n expected number of replenishments per

unit time as a function of the number

of satellites on-orbit,

are the appropriate aggregate level indicators

described in the introduction from which on-orbit

availability can be computed.

k , -
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The result of this section has been to provide operations and

budget planners with an analytical scheme for identifying the most

important components of and for computing expected availability of

an orbiting satellite system. The next section identifies how these

same aggregate parameters may be employed to approximate expected

life-cycle costs.

2.2 The Expected Life-Cycle Cost Model

Since the parameters IX, maintain-the most significant

impact upon expected availability, there should exist an analogous

analytical expression for expected life-cycle cost whiz" employs

the aggregate information represented by the parameters fIn, Un.

Moreover, since the occurrence of a rate of activity summarized by

Ix n can now be described according to a probability, as
I na

described in Theorem 1, a true expectation of life-cycle costs may

be computed.

The major contributors to life-cycle costs may be categorized

as Research, Development, Testing, and Evaluation (RTDE) costs,

Production (P) costs, Launch (L) costs, and Inventory Carrying (I)

costs. The production costs are a linear function of the cost per

unit to produce a single satellite and the weighted replenishment

rate. Since required replenishments are assumed to drive the pro-

duction schedule, launch costs are also assumed to be directly

proportional to the weighted replenishment rate, as well as the

cost per launch. Finally, the inventory carrying costs are a

function of the cost per satellite per unit time of ground storage

and the rate at which inventory is accumulated. Additionally, RDTE costs
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are assumed to be a constant amount, from the perspective of failures

and replenishments.

The rate of inventory buildup is assumed to be the difference

between the replenishment rate and the failure rate, assuming that

replenishments occur at a faster rate than failures. This is a

quite tenable assumption since an active on-orbit complement can

only occur if the number of replenishments exceeds the number of

failures. Otherwise, the satellites would depart from the orbital

configuration faster than they could be replenished, leaving no

active orbiting satellites, and the system would never be available

to a user.

The above considerations may be combined to provide the follow-

ing analytical expression for expected life-cycle costs as a function

of the parameter set I, V. :

Theorem 2: The expected life-cycle costs E(LCC) of an on-orbit

satellite system characterized by the parameter set I n, Un may

be approximated by the expression.

H H

E(LCC) - RDTE + Cp TI E Pn Pn + CL T2 E Pn Pn
nmo nuo

• M
I.+ C I T 3 E -[Pn (1Pn - 'n ) T,]

where

01R, TZ constant Research, Development, Testing, and Evaluation Costs;

6_ •
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Cr cost per unit to produce a single satellite;

CL = cost per launch;

C1 I cost/satellite/tim unit of ground storage;

T appropriate normalizing factors to convert costs from a time

unit basis to a life-cycle basis;

M

E (-) - weighted average of the relevant activity parameters.
n-o

The budget planner may now employ the tools in Theorems 1 and

2 to investigate the cost effectiveness of various design strategies

(represented by 1n. )and replenishment strategies (modeled by
U1nI ) for the procurement of satellite systems. Of course, the

critical reader may question the validity of some of the assumptions

made earlier. However, a careful consideration comparing Theorem 1

to the assumptions made early in Section 2.1 reveals an interesting

phenomenon. While the assumptions relate to specific time increments,

the results of Theorem 1 relate the state of the on-orbit system to

the expected activity levels summarized by the parameter set X no, UI.

Moreover, at the means, any perturbations engendered by the assump-

tions will essentially be smoothed or eliminated. This is the real

value of using the state-space, Markov process modelling approach.

I. Thus, the only critical assumption is the existence of the aggregate

parameters IAn$ Un I and their adequacy and utility in measuring or

summarizing design and replenishment decisions. This consideration

is the subject of Sections 3.0 and 4.0.

1.N I ... .J
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2.3 Special Cases of Interest

Two major special cases are of interest: no on-orbit spares

and N on-orbit spares. These are the two most common replenishment

strategies modelled in the large-scale simulation models to be dis-

cussed. Each of these strategies should be reflected in the form of

1P 1. For simplicity, in each case, the failure rates are assumed

to be constant. Additionally, the expression for expected life-

cycle costs must be modified to reflect the specialized definitions

of A n 1n

2.3.1 No On-Orbit Spares

For this case, K out of M active satellites are required on

orbit to achieve availability. The expected replenishment rates are

constants refi cting launch patterns and launch delays.

AnA n 0n , ... , M

pn- p = l/(MTBL + MLD) n > 0

where

MTBL - Mean Time Between Launches; and,

MLD - Mean Launch Delay.

A.
Using the constants above, the expressions in Theorems 1 and 2

reduce to
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E(LCC) RDTE + CT 1  + CL T2 P + C T3 [T,]. - 4 ]"

2.3.2 N On-Orbit Spares

In this operational scheme, the total number of satellites must

reflect the transitioning of on-orbit spares to active satellite posi-

tions. The transitioning of on-orbit spares is characterized by a

faster replenishment rate. Moreover, only the last N active satel-

lites may be replenished from orbital spares. The spares themselves

are assumed to be replenished by ground launches. For example, con-

sider a satellite system with four active positions and two orbiting

spares. Only the third and fourth active positions may be replenished

from the orbital spares. All other active spacecraft and the spares

themselves must be replenished by ground launches.

X n A n=,... , Mn

1
P1  MTBL + MLD 0 <n < M -N

"n 12 OTD M- N < n < M

1
1 1 1= MTBL + LD M <n< M+ N

. . ..l i . .. 1l . .. . .. . .
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whe re

MTBL = Mean Time Between Launches;

MLD = Mean Launch Delay; and,

OTD = Mean Orbital Transfer Delay.

The form of the expressions described in Theorems 1 and 2 now

becomes

n

p 1< n cM-N

n! An 0

M-N n-NPl '2
p p M-N < n <1M
n n! in 0

n-N N
U'l '2

p M<n <M+N

n! An 0

M-N n M M-N n-N M+N n-N NJ -1

P= I+ P, + l 1j2 + z Pn 2

n=1 n.t n=M-N+i nt n=n ~ n. n

E(LCC) = RDTE + C PT 1 1P1 + C L T 2 11~ 1 C1 T3  [(Ill1 Pn) - X T 4

• ~n=MO

This modified expected life-cycle cost formula reflects the

fact that the orbital transition rate in p2 does not engender

production costs (C p) or launch costs (CL). In other words, the use

of on-orbit spares is assumed to affect only the expected inventory

costs. Moreover, the expected rate of inventory accumulation must

be modified to incorporate the fact that the replenishment rate

P1 is only in effect during the states in which no on-orbit spares

are available. This explains the appearance of the term f P n

1- n=o
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3.0 COMMONLY USED SIMULATION MODELS

Procurement planning for satellite systems is accomplished by the

U.S. Air Force predominantly at the Air Force Space and Missile Systems

Organization (SAMSO) in El Segundo, California. The Air Force personnel

are familiar with three large scale simulation tools available to ana-

lyze the cost effectiveness of procurement strategies. By far, the

most well known model is the General Availability Program (GAP) operated

for SAMSO by the Aerospace Corporation. The GAP program (and its many

versions) plays a significant role in the budgetary planning process

at SAMSO. However, that role is of no interest here, since this is

the subject of other current study efforts.

More recently, a large scale simulation model called the On-Orbit

Spares Analysis (OOSA) has become available for analysis of procurement

policies. The OOSA model was developed for SAMSO by ECON, Inc., a com-

mercial contractor. The interactive, operational version of OOSA is

housed on the Space Launch Systems Program Office Minicomputer and is

available for use by all payload offices, without charge. Finally,

The Rand Corporation's Spacecraft Acquisition Strategies Project has

employed the Satellite Availability Simulation Program (SASP) for

analytical purposes. The SASP model was developed by Major A. Gary

Parish, USAF, assigned to Rand by the Air Force. Documentation for

all of these models is generally available to the public and a listing

of sources appears in the references, where the test case data is dis-

cussed.

With some relatively significant variations, all three simulation

models operate upon the basis of the same fundamental sequence of

activities. During the operations phase of the satellite system's

life cycle, individual satellites are launched, failed, and replenished

according to some failure model which represents individual spacecraft

reliability and according to an individual program's preferences regard-

'ing various aspects of replenishment. At the end of the operations
phase, the availability and/or operations costs are computed. This

process is repeated for a large number of operations phases creating

IThe Air Force Space and Missile Systems Organization (SAMSO) has
been redesignated the Air Force Space Division (SD).

14
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a statistical data base regarding costs and/or performance. From this

data base, detailed statistical information can be generated. More

importantly for this study, both expected availability and expected

life-cycle costs may be (and usually are) computed.

In making comparisons among the various models, one encounters

some significant problems, some of which are organizational in nature

and some of which are methodological in nature. One of the functions

in introducing the {Xn ,} as aggregate measures is to achieve a level

of standardization for comparative purposes. However, comparison of

the results is tenuous due to the fundamental methodological differences

employed in obtaining the expected output measures--availability and

life-cycle costs. However, this study does not use the simulation out-

puts to make value judgments concerning individual models. The com-

parisons to be performed are employed to lend credence to the analytical

expressions in Theorems 1 and 2.

From the perspective of access, GAP is not an interactively ori-

ented simulation program while OOSA and SASP are geared predominantly

towards interactive use. In terms of aggregate output measures, OOSA

deals with both costs and performance (in the form of availability);

neither GAP nor SASP computes aggregate costs, both concentrating

primarily upon availability. All three have assumed underlying failure

and replenishment models. The remainder of this section analyzes each

of the simulation programs according to these underlying models. The

analyses in the section below are based upon the simplest version of

the simulation program (when more than one version exists).

3.1 The General Availability Program (GAP)

The GAP program was the first major SAMSO attempt to place pro-

curement strategy on an analytical basis. Failures are assumed to be

of three types: infancy (which occurs with probability p) and steady-

state and wearout (which occur jointly with probability l-p). Thus,

the failure model requires estimation of three sets of reliability

parameters--one set for infancy failures, one set for steady-state

failures, and one set for wearout failures--and estimation of the

parameter p, leading to the failure model:

1 .... ! , : ''' . . . .. . ... .|
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Rs/c -p R + (l-p) Rs R

where

Rs/c - reliability of the spacecraft;

P - probability of an infancy failure;

R, - reliability of infancy failures;
R ss - reliability of steady-state failures;

R - reliability of wearout failures.

w

A variety of forms is used for each of the reliability curves above and, of

course, each curve has its own parameters. The program logic uses the failure

model to generate failure times according to the following algorithm (1, p. A-13):

Generate
r1 , r2, r3 eU[O, 1]

r<p PYes Time t o Failure Remainder

>N1o Simulation=

No

T = -l'r
I ss 2

T1 R- 2

T2= R1(r )2 W 3

Time to Failure

The GAP replenishment model distinguishes between fixed and ramdom launches.

In the basic version of GAP, no on-orbit spares are allowed. When an active

satellite on orbit fails, the program checks to determine if a fixed launch has

been scheduled. If so, a delay is incurred until the fixed launch can occur. If

all fixed launches have occurred, a random launch must be generated with a con-

stant launch delay. The replenishment model can be represented in the logic form

given below (1, p. 11).

k -
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Find Time of
Next Failure

ixd YsIncur,

TLaunches of Delay ipfm aRemainder of
stn a init Until v Simulation

f o Fixed Launch

Generate Random
Launch After
Constant Launch

Delay

The computation of availability is performed against the time

standard of initial achievement of K active satellites (out of M) re-

quired for minimal availability (1, p. 10). In essence, this approach

ignores the effect of any infancy failures prior to that point in time,

providing a slightly higher availability measure. The GAP program

does not compute costs at all.

3.2 The On-Orbit Spares Analysis (OOSA)

The OOSA model uses similar methodological approaches to GAP with

the added advantages of modelling the use of on-orbit spares as a

replenishment strategy, of being interactively oriented, and of as-

sessing relative cost impacts on a total life-cycle basis. The fail-

ure model in OOSA is defined differently from the failure model of GAP.

The closed form of the OOSA failure model may be represented in the

following form:

Rs  = R R R
s/c s p c

, wher e
r R s/= reliability of the spacecraft;

R - reliability of supporting functions;

R = reliability of the payload;

R c reliability of the consumables.c
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For this model, three sets of parameters must also be estimated--one

set for each of Rs, R p, and Rc . However, the reliability model appears

to be more realistic than the mixed model employed in GAP. The failure

model above is implementing using the logic below (2, p. 2-31):

Generate
rl, r2, r 3 EU[O, 1]

T I  R7l(r )

T2 = Rpl(r 2 )

T = R)(r
3 c 3

Time to Failure Remainder of
= MIN(TI, T2, T3) Simulation

Since OOSA specifically addresses the use of on-orbit spares,

the replenishment model is quite complex. When an active satellite

on orbit fails and the simulation user has specified the allowance of

on-orbit spares, a check must first be accomplished to see if any

orbiting spares may be transitioned to active positions. The replen-

ishment mechanism may then take one of several courses of action de-

pending upon which maintenance philosophy has been adopted by the user

(the model identifies thirteen maintenance philosophies). In general,

assuming on-orbit spares are employed, the replenishment model may be

represented as follows (2, p. 2-17).

..
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Since the failure model does not distinguish infancy failures,

availability of the satellite system is computed upon the basis of

the time initialization of the operations phase (2, p.2-37). However,

the user specifies production and launch availability inputs relative

to an absolute zero time labeled Full Operational Capability (FOC)

(2,p.2-5). The effect of this time referencing allows some satellites

to be produced and launched prior to the initialization of the opera-

tions phase of the life cycle, the ultimate impact being that avail-

ability estimates are slightly inflated since a steady-state will

have been achieved before availability computations are performed.

As mentioned earlier, the OOSA program is the only program of

the three presented which actually performs an economic analysis.

The cost analysis in the RDTE and production phases consists of spread-

ing total costs over the years in which they were actually incurred

and applying learning curve effects to the production costs. Thus,

the RDTE and production phases of OOSA are deterministic in nature.

The operations phase cost analysis, however, must track the costs--

launch and ground storage--as a function of the stochastic activities

generated during the operations simulation trials. Since all cost

expenditures are attributed to the years incurred, the costs for each

simulation trial may be discounted and inflated, both of which are

automatically performed by the OOSA program. A large number of detailed

cost information printouts are available, providing the simulation user

with an amazing amount of insight into the sensitivity of budget expen-

ditures to a variety of operational and development strategies. Of

-nurse, the expected on-orbit availability and expected life-cycle

costs are automatically output as a result of a simulation execution.

3.3 The Satellite Availability Simulation Program (SASP)

The final simulation model to be presented is The Rand Corporation's

SASP program. Although written independently from the GAP model, the

SASP program operates in a manner similar to GAP. The SASP program,

however, has not been subjected to an extensive modificaiton process

induced by a variety of users. For this reason, the failure and

,' replenishment models are somewhat simpler than the GAP models. The
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form of the SASP failure model is a mixture process described by

. s/c= (l-p) Ras + pRw

where

Rs/c = reliability of the spacecraft;

p = percent of time the wearout reliability dominates the

piece-part reliability;

R = steady-state or piece-part reliability function derivedss

by standard techniques explained in Mil HdbK 217B; and,

R = wearout reliability function.w

This simplified failure model requires the estimation of two sets

of parameters--one set for R and one set for R --and estimation of

the parameter p. However, the SASP User's Guide specifically states

that unless the user desires to test alternative hypotheses about the

validity of piece-part reliability functions, the parameter p should

be set to zero, eliminating the need to estimate p and the parameters

for R and reducing the SASP model to a steady-state dominated fail-

ure process (3, p.2). The algorithmic representation of the failure

model is easily visualized as follows:

4

I.

'x.
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Generate
r1 , r2 £ U[O, 1]

Time to Failurei !Remainder i
p= R<(r) of

w 2 , Simulation

Time to Failure
-1
sR (r 2

The approach to replenishment employed by SASP is also relatively

simple compared to both GAP and OOSA. The SASP program, like GAP,

makes no provision for on-orbit spares. However, the approach is

unique in the sense that both the satellite and the launch mechanism

must be available for a replenishment to occur (3, p. 5). This

mating schedule is input into the program by the user. Additionally,

the SASP program distinguishes between fixed and random launches, as

does the GAP program. The replenishment model may be characterized

in the following flowchart format (3, p. 5):

'i.



U. V

-29-

Find Time of
Next Failure

Fixed Satellite Yes Generate
Launches Yes Launch

s No
Generate Fixed
Launch After
Launch Delay

Generate

Launch After
Launch Delay

Examination of the actual SASP computer code reveals that the

expected availability is computed after an initial orbital configura-

tion is established (3, p. 20,23). This is equivalent to the approaches

employed by GAP and OOSA. Moreover, this is consistent with a failure

model which essentially treats operations phase activities as steady

state in nature (the parameter p is set by zero). The criterion

employed to compute availability is that at least K out of M opera-

tional satellites must be maintained on orbit in order for the system

to be classed as available. As with the other models, a large number

of output plots are accessible to the user. The expected availability

measure is the only output relevant to this study. Costs are not

considered in any form.

The chief virtue of the SASP model is its relative simplicity,

both from an algorithmic perspective and from a user access orientation.

. The user can trace the derivation of output measures from the input

parameters, inviting a relative level of confidence in the outputs.

1f~

I*
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The algorithmic simplicity insures relatively simple inputs which are

easily organized and understood.

This section has attempted to summarize some of the major aspects

of large scale simulation models employed to investigate the impact of

replenishment strategies upon the cost effectiveness of a satellite

system maintained on-orbit. In each of the three models examined, only

the basic version of the model was represented. For each program, the

underlying failure and replenishment models were presented and the

availability measure was analyzed. While basic differences do exist

regarding the fundamental modeling approaches of each of the three

alternatives, some commonality is apparent. For the most part, the

expected on-orbit availability is computed according to the require-

ment that at least K out of M satellites must be maintained on orbit.

Additionally, certain of the parameter inputs from which expected

availability may be computed are required in all three models. For

a comparative input/output analysis, see Figure 1. Specifically,

reliability distribution parameters, and production or launch sched-

ules are used as required inputs. The reliability parameters may be

employed to compute the aggregate {X n } while the launch schedulesn[
may be utilized to derive the replenishment parameters {pn, with

some variations required to represent the use of on-orbit spares.

Using these aggregated {X nPn I in the analytical forms of Theorems

I and 2 should yield expected costs and performance measures which are

roughly approximate to the corresponding simulation outputs. This

comparison is the subject of the remainder of this study.

r - - . . .
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4.0 TEST CASES

The purpose of this section is to compare the closed form

approximations of expected availability and expected life-cycle

costs with the simulated results. Five cases are

presented. Derivations of the aggregate parameters IXn, 'n

I n n,

appear in Section 4.1. A brief discussion comparing closed form and

simulation outputs is the content of the second subsection, Section

4.2. Finally, Section 4.3 contains some general comments regarding

the applicability of simulation and closed form expressions. This

section of the study is both important and interesting because of

the evidential strength lent to the claim regarding the appropriate-

ness of the aggregate level approach to modelling.

4.1 Derivation of Aggregate Inputs

The major inputs used to derive GAP aggregate parameters

~In VI are MMD - Mean Mission Duration = a r 1 +

where aJ = parameters of Wiebull reliability function for Rss;

PS - it, .1 = a sequence of production times;

MLD = deterministic launch delay time.

M = maximum number of allowable active satellites in a

constellation;

I.

1.
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Using these inputs, the aggregate parameters may be computed as

1
Xn MM  for n - 0 , M

Pn =  MTBL + MLD for n-O, ...

t -t 1

where MTBL = P =-meantime between launches.
P

Since no on-orbit spares are allowed, one can see that the GAP

program is simply an instance of Special Case 2.3.1 No On-Orbit Spares

Since the failure and replenishment models are significantly

different for OOSA, different inputs are employed for determination

of the aggregate parameter set, as follows:

DL = design life of the satellite in hours;

LS - tl, ... , t f launch auailability schedule in days

relative to Full Operational Capability

(FOC);

MLD - mean launch delay;

OTD = mean orbital transfer delay;

M = maximum number of allowable active satellites in a constel-

lation;

N - maximum number of allowable on-orbit spares.

The aggregate parameters may now be computed from the above numbers as
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An A 1 (24 hours/day) for n 0 0, ... , M

"l MTBL + MLD for 0 < n < M -N;
M <n < M+ N

)n 
1 1

1 for M-N <n <M

where MTBL mean time between launches =

Moreover, the same parameter set IA )nlyields an expression for

expected life-cycle costs from Theorem 2 -

E(LCC) - RDTE + C p T 1 + CL T P1 + CIF (24 hours/day) T (10 -6)

+ C1,IV (24 hours/day) T (10 6) E Pn)* j T 4

where some additional OOSA inputs are necessary. The inputs are

listed below:

RDTE = fixed research, development, testing, and evaluation costs

(in $I0b);

Cp - production costs per satellite (in $i06)

= (Total Production Costs)/(Number of Satellites);

CL - cost per launch vehicle (in $10
|.

C = Fixed inventory carrying costs per hour;
IF

1"A
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CIV = Variable inventory carrying cost per hour per satellite;

T = 3600 days per ten-year operation's phase of a life cycle;

10-6 = necessary to convert inventory costs to same level of

magnitude as other costs.

Since on-orbit spares are incorporated into the analysis, the

OOSA approach is a specific example of Special Case 2.3.2 On-Orbit Spares

Aggregating the SASP inputs to determine X n also requires

n' ni

a different strategy. The input parameters used from SASP are listed

as

MMD = mean mission duration = a r (1+ )

where a, = parameters of the Wiebull reliability

function for R ;

L = length of satellite operation's simulation;

M = maximum number of allowable active satellites on orbit.

The computations for Ln, 1n are

i. A 1 for n = 0, M
n MMD""'

1MTL for n = 0, .. , M

1.n

L '. 4
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where MTBL -- L - mean time between launches.
MM4D

Thus, the SASP model can be represented as an application of

Special Case 2.3.1 No On-Orbit Spares.

4.2 Comparison of Simulation and Closed Form Outputs

Five basic cases were chosen for comparing simulation results

and analytical results. OOSA-I is a case allowing zero on-orbit spares.

OOSA-2 analyzes the use of, at most, two on-orbit spares. GAP-l and

GAP-2 compare the effect of increased Mean Mission Duration (reflecting

higher reliability satellites). The case from SASP is supplied to

provide additional support for the closed form solution. The results

of the analysis are summarized in Figure 2 in which s , s are

simulation outputs and ' c are closed form estimates derived by
c

the formulas in Theorems 1 and 2.

The OOSA and GAP cases demonstrate the internal consistency of

the expressions for P . Specifically, the addition of on-orbit spacesn

changes A from .994 to .9999 (increased availability). Additionally,c

the LCC from Theorem 2 is sensitive to cost savings accrued from thec

use of on-orbit spares, decreasing from $889M to $828M from the decision

to use two on-orbit spares. This is a direct result of an assumption

made earlier in which production and launch costs remain constant with

respect to the use of on-orbit spares and only ground storage costsI.
were assumed to effect the expected life-cycle costs. A comparison

of the cost categories as computed in Appendix B is presented in

Figure 3. The simple analytic computations reveal a significant
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trategy No Spares 2 Spares
Categor (OOSA-1) (OOSA-2)

RDTE 638 638

Production 173 173

Launch 16 16

Operations 62 1

TOTAL 889 828

Fig. 3--Detailed Cost Comparisons (Millions of Dollars)
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savings in ground operations costs which may be directly attributable

to the use of on-orbit spares. The two GAP cases reflect increased

availability incurred by building more reliable satellites. Again,

the analytical form demonstrates internal consistency by increasing

from .552 to .692 as a result of increasing mean mission duration
c

from 12.95 months to 17.32 months.

A percentage comparison between k and ' relative to A yieldsc s c

a percentage difference range of -3.8 percent to +7.3 percent with

several values being extremely close. A similar comparison for

andr yields a difference range of -7 percent to + 2 percent. Whilec
this information is not conclusive, the fact that A values are derived

s

from extremely complex and detailed computer simulations lends strong

support to the appropriateness of the closed forms in Theorems 1 and 2.

The difference range is relatively small, indicating that the closed-form

equations provide some useful approximations. Moreover, since the

difference range includes both positive and negative values, no bias

is indicated in either direction. More important are the reasons for

the differences. The analytical solution adopted X = X whereas then

simulation models employ more detailed failure mechanisms, as displayed

in Sections 3.1 - 3.3. In each of the simulations, booster failures

were incorporated into the analysis. Other details regarding replenish-

ment strategies (such as the multitude of sparing philosophists in OOSA)

provide a certain variance in the estimates. The next subject to be

addressed is the utility of the approximations obtained from Theorems

1 and 2.

I..
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4.3 Relationships Between Simulation Solutions and Closed-Form Solutions

As with any modelling effort, certain advantages and disadvantages

accrue to the ultimate user. The evaluation of this approach's utility

lies in the realm of the aggregation level employed. The concept of

aggregating inputs at the level of the mean serves to identify the

major contributors to satellite system cost effectiveness. The

analytical models may be used with great care to establish the internal

consistency of the simulation models. The expected analytical outputs

can effectively be employed to eliminate large ranges of values for

certain replenishment input parameters. The budget analyst can rapidly

perform cost effectiveness tradeoffs with a hand calculator. The design

engineer can investigate the impact of improved or lesser reliability

upon the system cost effectiveness. Since a basic input is Mean Time

Between Failures, a procurement office might successfully use the simpler

models in negotiations involving MTBF warranties. Ideally, in either

case, the proper use of the closed forms is to sufficiently narrow the

focus of the failure and replenishment inputs in order to minimize the

number of simulation runs required.

However, the aggregate model is quite insensitive to certain detailed

inputs that may be critical. A specific example is the aggregation of

the launch schedule into a Mean Time Between Launches (MTBL). Consider

the two schedules below:

PA

I.

.b.

IIII1 . =- "-
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Launch Time (Months) Launch Time (Months)

0 0

6 2

12 10

In both cases, MTBL - 6 months. Thus, the aggregate model makes no

distinction between the schedules. However, a budget analyst would

desire to convey the sensitivity of the two schedules to corresponding

* funding allocations. For this purpose, he would be required to use a

detailed simulation to measure cost effectiveness. But, the models from

Theorems 1 and 2 could have been used to determine that the 6-month

MTBL was the most cost effective, given the reliability or failure model

for his satellite. The proper use of the analytical model served to

eliminate a large range of input values for MTBL. The OOSA simulation

could now be used to determine which of the two schedules above with

6-month MTBL provided the most acceptable budget allocation (a subjective

decision, to be sure). Other factors not included in the analytical

models, but usually included in the detailed simulation, are booster

reliability, number of satellites per launch, detailed failure models by

subsystem, cost and funding profiles, expected availability over time,

and the probabilistic nature of both costs and availability (reflecting

the risk of nonattainment). Thus, the utility of the analytical forms

* is to provide a convenient and effective starting point for detailed

simulation analysis which minimizes the computational effort of multiple

simulation runs. However, the power of dealing with complex failure and

replenishment interactions at the level of means or expected rates

should not be minimized.
1I..,

LL- , -
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5.0 CONCLUSIONS AND RECOMMENDATIONS

This analysis has produced two major results: a theoretical base

to the major computer simulation models for assessing satellite system

cost effectiveness and a set of simple tools for guidance in the use of

the large-scale models. The theoretical base has been to express the

complex relationship between failures and replenishments as a simple

expression involving the mean or expected levels of these activities.

The same expressions representing the theoretical constructs provide

the useful tool, as long as the user recognizes the limitations

inherent in the aggregation process.

Expansion of the theoretical base couild take one of several

directions. The failure parameters could be modified to reflect

launch boosters and to incorporate the effect of workarounds. Detailed

subsystem modelling could be included as part of the failure mechanism.

Aggregated replenishment strategies { pn} should provide for launches with
multiple payloads. Shuttle activities might be handily included. The

latter are really simple modifications. Finally, the most general form

of the models should address the interaction among multiple satellite

systems competing for a common replenishment pool (i.e., an analytical

model for the entire space segment), while including all information

previously modelled.

* A common usage of the simulation models at SAKSO is not addressedA.

within this paper. Generating production and launch schedules from

probabilistic curves relative to the state of the satellite system

... .2 i
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may not be accomplished with the steady-state solutions. In order to

perform scheduling allocation, the transient state equations of Sec-

tion 2.1.1 must be solved. At present, the current development of

applied stochastic processes does not admit an exact solution to the

transient equations, given a maximum number (M) of satellites on-

orbit. In fact, approximation formulas using diffusion processes

have not progressed that far either. Whether alternative approxima-

tion techniques are available is not yet known. A future study should

attempt to numerically evaluate the extent and duration of transient

activities. For small numbered systems, transient analysis may be

quite revealing.

L

i.
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Appendix A

DERIVATION OF AGGREGATE PARAMETERS FROM SAMPLE DATA

NOTES: (a) All data are documented in Figure 2: Comparison of Simu-

lation Outputs and Closed Form Outputs;

(b) The formulas employed are derived in Section 4-1.

A-l: On-Orbit Spares Analysis (OOSA)

OOSA-I: (a) X = . (24 hours/day) - 61386 (24) - .000391/day
DL618

(b) MTBL pt 918 + 459 days . 137.7 days
p 10

1 1 06/day

= MTBL + MLD 137.7 days + 30 days

1 1
OOSA-2: (a) X = . (24 hours/day) - 61386 (24) f .000391/day

t - t

(b) MTBL - p  - 918 + 459 days 137.7 days
p 10

1 1 .006/day
1 l MTBL + MLD = 137.7 + 30

1 1 .14/day
"2 OTD 7 days

JPAOIN.ANT
I4.
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A-2: General Availability Program (GAP)

GAP-l: (a) X M 1 2.5mnh = .077/monthM 12.95 months

t -tl f

(b) MTBL f P 1- 3 0 - 0 6 months
p 5

1 11 f 1f .143/month
MTBL + MLD 6 mo. + 1 mo.

GAP-2: (a) X = l-
_ f 1 ffi .059/month

MMD 17.32 months

t - ti

(b) MTBL=- t I = -3 0 - 0 6 months1 5

1 1 -143/month
MTBL +MLD 6+ I

A-3: Satellite Availability Simulation Program (SASP)

1 1
SASP: (a * 0171 1 -MMD = 58.02 months .017/month

L 120
(b) MTBL = = 58.02 = 2.06 months

MTBL 2.06 months

I

. . .. - -. . . I '
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Appendix B

REPRESENTATIVE ANALYTICAL COMPUTATIONS

FOR ILLUSTRATIVE PURPOSES, the cases OOSA-l and OOSA-2 represent the

most general set of alternatives available.

OOSA-: (a) AC = P 2 + P3 + P4 (No On-Orbit Spares)

n
P = Po lsn.$4

n1 nn n

PO= + i 1I
0 n=l ,n

= i + (.006) + (.006)2 + (.006)3

1!(.000391)l 2!(.000391)2 3!(.000391) 3

+ (.006)
4 4 -i

4!(.000391)
4

P = .000328
0

= (. oo6)I.

P = (.006) (.000328) = .005i'!(. 000391) 1

)2

(.006)2 (.000328) = 038
2!(.000391)

.

'aIr - -I- --
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= (..OO6) 3 (.000328) - .198
3 3!(.000391) 3

(00-6) (.000328) = .758
4 4!(.000391)4

A= .024 + .161 + .81 - .994
c

= ¢p I(4T1-6
)

(b) LCC- RDTE + + CLTjI1 + cIF(2 4)T(10 6

+ CIV(2 4)T(10-6) Oi-)T 4

A 594 -6
LCC (- )3600(.006) + 8(3600)(.006) + 174(24)(3600)(10 - )

+ 35(24)(3600)(.006 - .000391](10- 6 )(3600)

LCC - 889c

OOSA-2: (a) A P P2 + P3 + P4 + P5 + P6 ITwo On-Orbit Spares)

nl P 1 2
n! P <n <2

2 n-2

P 11U P 2<n< 4
n n'A 0

I.
n-2 2

, 1 2 4 <n <6

) n! 0

1
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Po 0 1 + I -, + I+, I1 n
3n! A n=3 )n n=J n! A -

= 1 + (006)1 + (.006)2 +(. 006)2 (.14)3

! (.000391) 2!(.000391) 3!(.000391)

+ (.006)2 (14) + (.006) 3(.14) + (.006) 4(.14)2 -

4! (.000391)
4  5 !(.000391)

5  6!(.000391)6

P 0 (.666)(10
- 7 )

0

1'(.006)1. (.666)(10 - 7 ) = (.102)(10 - 5 )P1 1!(.000391)

= (.006)275

2!(.0069) 2.(.666)(10- 7 ) = (.784)(10- 5 )2 2!(.000391)

P .. .(.006)2 (.14) (.666)(10-) = (.936)(10- )
3!(.000391) 3

(.006) (.14)2 (.666)(10 - 7 ) = (.838)(10- )
4!(.000391) 4

(.006) 3(.14)2 (.666)(10- 7 ) = .257P55
S5! (.000391) 5

p (.006) 4(.14)
2 (.666)(10

- 7) = .658
6! (. 000391)6

= (.784)(10- 5) + (.936)(10 - 3) + (.838)(10- 1)
C

+ .257 + .658
.

A = .9999
C

-- -
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* -6
(b) LCCc = RDTE + CpTV1 + CLTl1 + CIF(24 ) T (10. )

C4

+ C (24) T (10-6 )[(il 4oPn) -XI(3600)

L 594.-

LCC (--)(3600)(.006) + (8)(3600)(.006) + (174)(24)(3600)(10
- 6)

+ (35)(24)(3600)[(.006)(.085) - .0003911(0-6)(3600)

LCC = 828
c

I.

'I
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